2025-08-20 01:12:45
基坑支护是为保证地下结构施工及基坑周边环境**,对基坑侧壁及周边环境采用的支挡、加固与保护措施。其设计需综合考虑基坑深度、地质条件、周边建筑物分布、地下管线走向等因素。在软土地区,常用的支护形式包括排桩支护、地下连续墙、钢板桩等,这些结构能有效抵抗坑壁土压力与水压力,防止基坑坍塌。同时,支护体系需具备足够的强度、刚度和稳定性,通过计算确定合理的入土深度与截面尺寸,确保施工期间基坑变形控制在允许范围内,保护周边既有建筑与基础设施的**。设计施工方案时要充分考虑基坑支护的需要。浙江移动型基坑支护
土钉墙支护,包含单一土钉墙、预应力锚杆复合土钉墙等多种类型,适用于特定地质条件和基坑深度的项目。单一土钉墙通常用于地下水位以上或降水后的非软土基坑,且深度不超过 12m;预应力锚杆复合土钉墙可用于类似地质条件但基坑深度不超过 15m 的情况。土钉墙施工遵循 “超前支护,分层分段,逐层施作,限时封闭,严禁超挖” 原则。每层土钉施工后,需按要求抽查土钉抗拔力,确保其能有效锚固土体。开挖后,24h 内(淤泥质土为 12h 内)要完成土钉安放和喷射混凝土面层作业,上一层土钉注浆 48h 后才可开挖下层土方。浙江移动型基坑支护足够的监测措施是基坑支护中不可或缺的环节。
基坑监测是支护工程的重要组成部分,通过对支护结构变形、周边环境沉降等参数的实时监测,掌握基坑受力与变形状态,为施工**提供保障。监测内容包括桩顶位移、墙体变形、锚杆拉力、周边建筑物沉降、地下管线位移等。监测点应根据基坑规模、周边环境敏感程度合理布置,形成监测网络。监测频率随施工阶段动态调整,在开挖关键期需加密监测频次。当监测数据超过预警值时,应及时采取加固措施,如增加支撑、调整开挖顺序等,防止事故发生。
地下水是基坑施工的主要风险源,控制不当易引发管涌、流砂、坑底隆起等事故,需结合降水与截水措施。截水系统常用高压旋喷桩、深层搅拌桩形成止水帷幕,或利用地下连续墙的自身防渗性能,将地下水阻隔在基坑外,适用于地下水位高、透水性强的砂层。降水则通过管井、轻型井点等抽取地下水,使坑内水位降至作业面以下 0.5-1.0m,管井降水适用于渗透系数 10-200m/d 的中粗砂地层,轻型井点则适用于渗透系数 0.1-50m/d 的粉土、砂土。对于敏感区域,需采用 “降水 + 回灌” 技术,通过回灌井补充周边地下水,减少因降水导致的地面沉降,回灌量通常控制在抽水量的 70%-80%。基坑支护设计应保持与相关单位的有效沟通。
地下连续墙以其整体性强、防渗性能好等特点,在深大基坑中应用非常广。其施工过程为先开挖沟槽,采用泥浆护壁防止坍塌,再放入钢筋笼并浇筑混凝土,形成连续的钢筋混凝土墙体。地下连续墙不仅可作为基坑开挖阶段的支护结构,还能在主体结构施工完成后作为长久结构的一部分,实现 “一墙两用”,节省工程造价。在软土、砂土等复杂地层中,地下连续墙能有效控制基坑变形与地下水渗透,尤其适用于周边有密集建筑物或地下管线的敏感区域。钢板支护是一种常见的基坑支护方式。浙江移动型基坑支护
基坑支护的成功实施,是项目顺利推进和高质量完成的重要保障。浙江移动型基坑支护
基坑支护与主体结构结合的设计理念能实现支护结构的长久利用,节约工程成本。如地下连续墙作为主体结构外墙,锚杆与主体结构楼板结合形成长久支撑,省去了支护结构拆除工序。设计时需兼顾施工阶段的支护功能和使用阶段的结构功能,对墙体进行防渗、防腐处理,确保满足主体结构的耐久性要求。这种 “两墙合一”“支撑与结构结合” 的设计方法,在城市地下空间开发、地铁车站等工程中应用较多,既能缩短工期,又能减少建筑垃圾,符合绿色施工理念。浙江移动型基坑支护